企业进行数据治理的五大核心要素

 二维码

  数据治理专注于将数据作为企事业单位数据资产进行应用和管理的一套管理机制,能够消除数据的不一致性,建立规范的数据应用标准,提高数据质量,实现数据内外部共享,并能够将数据作为组织的宝贵资产应用于业务、管理、战略决策中发挥数据资产价值。


数据治理.jpg


  1、数据治理需要体系建设


  为发挥数据中台价值需要满足三个要素:合理的平台架构、完善的治理服务、体系化的运营手段。根据企业的规模、所属行业、数据量等情况选择合适的平台架构;治理服务需要贯穿数据全生命周期,保证数据在采集、加工、共享、存储、应用整个过程中的完整性、准确性、一致性和实效性;运营手段则应当包括规范的优化、组织的优化、平台的优化以及流程的优化等等方面。


  2、数据治理需要夯实基础


  数据治理需要循序渐进,但在数据中台建设初期至少需要关注三个方面:数据规范、数据质量、数据安全。规范化的模型管理是保障数据可以被治理的前提条件,高质量的数据是数据可用的前提条件,数据的安全管控是数据可以共享交换的前提条件。


  3、数据治理需要IT赋能


  数据治理不是一堆规范文档的堆砌,而是需要将治理过程中所产生的的规范、流程、标准落地到IT平台上,在数据生产过程中通过前向的方式进行数据治理,避免事后稽核带来运维成本的增加。


  4、数据治理需要聚焦数据


  数据治理的本质是管理数据,因此需要加强元数据管理,补齐数据的相关属性和信息,比如:元数据、质量、安全、业务逻辑、血缘等;应通过元数据驱动的方式管理数据生产。


  5、数据治理需要建管一体化


  数据中台的数据模型血缘与任务调度的一致性是建管一体化的关键,有助于解决数据管理与数据生产口径不一致的问题,避免出现两张皮的低效管理模式。


  数据治理在满足数据治理政策要求,达到最终管理目标:逐步提升数据质量,力争确保数据安全管控,不断发掘数据资产价值,实现企业高质量发展。